N

b L

3. Effort to Diagnose the Error - Do not include effort spent in initial detection
a. No. of Runs to Diagnose__ Elapsed Computer Time (Minutes)

b. Working "ime to Diagnose Hours___
4. Category of Change

SOFTWARE CHANGE REQUIRZD
Nature of Change

Documentation (Preface or Comments)
Fix Instruction

Change Constants

Structural

Algoritknic

Other - Explain

Source of Bug

EI Bug essentially unrelated to previous corrections (i.e., usual case of
bug just discovered)
D Previous correction did not remove the belleved error (i.e., improper or
incomplete analysis)
New Bug, introduced by a previous correction (i.e., bug generation through
a correction).

Iype of Bug
Misinterpretation of Specifications Operating System
Wrong Specifications | Support Software
Incomplete Specifications Card Mispunched
Incorrect Sequencing of Computations | Other - Explain

Incorrect Input Data (Type and Quantity)
Incorrect Expressions

Incorrect Declaration

No Defense Against Invalid Data

Se Difficulty of Correction
a4, No.of Rune to Correct__ Elapsed Computer Time (Minutes)_

b, Working Iime to Debug: Days___ Hours___
c. No. of Cards: Changed _ Added__ Deleced___

6., Comments (Uce Reverse Side and Additional Sheets If Necessary)
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3. 6.6 The Present Status and Planned Activities

Problems 1,2 and 3 have been debugged by single programmers, that
is, by just their authors. A set of test data has been selected for problem
1, and the several versions of the first program have been exercised with
this test data successfully.

It is planned to perform the additional debugging with other program-
mers andto use the test data for the experimental small scale verification

of our theoretical work.

1. M. Halstead, "Software Physics', Basic Principles IBM Research
Report, RJ1582 IBM Research, Yorktown Heights, N.Y. May 1975,

3.7 Micro Reliability Models

by M. L. Shooman

3.7.1 Introduction

Many previous software reliability prediction models by this emthorl
and others2 have concentrated on the bulk ( macrogaspects of a program.
This work involves a newly developed micro model? which is based on
program structure.

It is assumed that the program has been written in structured or
modular form so that decomposition into its constituent parts is simple.
Further, we assume that via analysis of the program the decomposition can
be related to several paths or other functional structures within the pro-
gram.

The model is constructed based upon the frequencies with which each
of the j paths are run, (fj), the running time of each path, (tj), and the

probability of error along each path, (qj) :

Several methods of calculating or measuring the fj’ tj' and qj para-

meters are suggested. In fact it is possible to use one technique (historical
data) to produce crude estimates at the start of the design, and refine the
estimates with more accurate values as the design progresses. Given the
existence of such a model, we can consider the application of three im-
portant design techniques which are impossible with a macroscopic model:

(1) Apportionment of the software reliability(or mean time to failure)
specification among the subsystems so each design team has their
own goal to meet. The apportionment is obviously done so that the
subsystem reliabilities combine to yield a system reliability which
meets system specifications.
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(2) If design proceeds either bottom up or top down, eventually there is
a system integration phase where all parts are put together and tried
out. The macroscopic models developed previously could not be ap-
plied before the system reached the integration stage. However, the
new microscopic model proposed can be used to combine the results
of the module development phases to predict a preliminary software
reliability index before the system integration phase.

(3) The microscopic model is based upon measurements made on the
software design. Such measurements and analyses performed on the
software lead to a more disciplined design and provide insight into
how the module performance relates to overall software system per-
formance.

3.7.2 Micro Decomposition Model

The micro decomposition model which will be proposed in this sec-
tion is based upon several assumptions. We first assume that the
program has been designed using a structured or modular philosophy
and as a result there emerges a natural structure of the program
which can be described as consisting of a number of paths, cases,
parts, modules, or subprograms. The decomposition focuses about
this natural structure. In general we will primarily use the term
paths from now on to designate the paths, cases, parts, modules,
subprograms, or any other important substructure. We also assume
that the majority of the paths are independent of each other. (One
could probably tolerate some type of dependence in the model if it
were limited.)

The decomposition model will be developed from the probabilistic
viewpoint of relative-frequency. We will hypothesize a sequence of
tests which either uncover a bug (failure) or run to completion with-
out uncovering a bug (success). We begin our development of the
model by defining the following variables and parameters:

m

N The number of tests

-
1]

The number of software paths (cases, parts, modules, etc.)

t.  Time to run case i (if time is not deterministic we can sub-
stitute the mean value of ti’ i.e., ti)'

Probability of error on each run of case i (The probability
of no error Py 1 - qi).

0
]

(o)
m

Frequency with which case i is run,

Total number of failures in N tests.

=]
n

oy
"

Total cumulative test time in hours.
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Note that in the above set of definitions we have defined N as the number of
tests. Thus, we are modeling actual or simulated operation by a succession
of N tests (path traversals) of the system. We also assume the input
data varies on each traversal. This is the reason why we have assigned a
constant as the probability of encountering a bug on each run, q;-

If there were no variation in input parameters, and three successive
tests each traversed path j, then the probability of encountering an error
on the first trial would be q.. The conditional probability of encountering
a bug on the second traversil of the same path with the same parameters
is unity. Similarly, the probability on the same path with the same para-
meters the third time is also unity. Thus, the probability of a bug on three
traversals ol path j is qj x1x1-= qj'

Since we have assumed a variation in parameters on each run in our
model and each test is independent, then the probability of encountering one
bug on three successive traversals of path j is given by the binomial distri-
bution as 3

P(l error in three trials) =<f) qj1 (l-q.l) 2 (1)

Similarly, the expected number of occurences in a probabilistic process
governed by a binomial distribution is

Number of Occurrences = Nq (2)

where N is the number of trials and q the probability of occurrence.

3.7.3 Development of the Model

We can now compute the total number of failures ne in N tests. The
tests are distributed along each path such that Nf] tests traverse path 1,
Nf2 tests traverse path 2, etc. Thus, successive application of Eq.2 to
each of the i paths yields for the number of failures in N tests.

nf=Nf1q1 + Nf2q2+..... Nfiqi (3)

We can now compute the system probability of failure on any one test run,
9 by taking the ratio of n¢/N as N approaches infinity

n i

q ¥ lim = = f.q. (4)
O M jzl )7

Similarly we can compute the system failure rate, Z by first com-

puting the total number of test hours. First we compute the total number of
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! traversals of path i as N:fi as was previously done. Out of these trav-
| ersals the fraction P will be successful and will accumulate N XfiXPiXti

hours of successful operation., If we assume that the time to failure distri-
bution for the Nf.lq.1 traversals which result in failure 1is rectangular, then

i each trial which results in failure runs ti/Z hours on the average before

4
failure. Thus, the total test time accumulated in N runs is given by
t1 t
H = Nf]pltl + Nflq1 e ol NfZPZtZ + NquZ 5
ti 1 qi

Substitution for p; = l-q.l in Eq. (5) and simplification yields

i q.
= X St
H =N & fiti (1 > ) (6)

we now compute the system failure rate %, as

.
A lim — (7)
o Wi H

and substitution from Equations (3) and (6) into (7) yields in the limit

i

% = : (8)
o i q.
Y (-5t

3.7.4 Special Cases

We now wish to examine equations (4) and (8) under special constraints.
These are listed in Table 1. Note that the units of z, are clearly seen from

case 4 to be failures per hour, or just hr. e

3.7.5 Measurement of Parameters

In order to implement the model developed in the previous sections
we must develop numerical values for the sets of parameters fj, qj' and tj.
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Of course in keeping with the concept of structured programming and levels
of structures within levels, one could merely state that we continue decom-
position to lower levels until we end up with a new set f'iu q‘i., and t'j,

para.neters at a lower level. Clearly, the answer to the question how we
could measure or estimate our parameters at a higher level is also, by
and large, an answer to how we would do the measurement at a lower
level.

The parameter sets fj and tj are related to the structure, size, and

complexity of the control structure and program modules. The determina-
tion of the f. can be made by a study of the physical meaning of the paths
and the didtributions of input parameters which drive one along the pro-
gram paths. If the program is complex, or there is really no information
on input statistics, we can take one of two approaches. Assume f. has a
uniform distribution (see case 2 of Table 1) or insert counters in J the
various paths, and experimently determine the f;. The experimental ap-
proach requires that the program be in reasonably good shape so that a
simulated test program can be run. Clearly, if a counter c; is placed in
each path such that it registers one count for each path traversal, and we
run N tests then fj = cj/N.

The set of t. parameters can also be either calculated or measured.
If the program is ) written in assembly, machine or microprogramming
code, one can estimate quite closely the run time of a sequence of code by
summing the operating times of each instruction. If the program is complex,
one can write an analysis program to read the code and perform the time
analysis to determine t., In the case of a higher level language,

(FORTRAN, PL/1, COBOL, etc.) the analysis is more complex, because
each statement may expand into one to say ten machine language statements.
Several approaches are possible. First of all, one can obtain a core dump
of the machine language program and proceed as has been described.
Another alternative is to insert a block of higher level code inside a DO T = 1
to K loop. The loop is run for a particular value of K and the C. P, U.

time of the computer recorded. The value of K is changed and another run
and value of C.P. U. time is recorded. With about 3 values of C.P. U. time
vs. K an accurate enough straight line or polynomial model of run time vs. K
can be fixed to the data.* One can then use the formula to predict the run
time of the actual code block by substituting the number of repetitions. (True
value of K.) Of course if the program and a simulation is available one can
merely run several test runs for each path, record the times and use aver-
age values for each path.

*It is necessary to take several measurements for two reasons. First of
of 21l there is program overhead which may vary from run to run depend-
ing on the operating system. (Also there is DO loop overhead). Second,
the recording of C. P, U, time is not accurate for short run times. To
correct for DO loop overhead and also system overhead, one can perform
the measurement with and without the code block in the loop and work
with the difference.
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TABLE 1.

System Probability of Failure and
Failure Rule for Special Cases

Constraints
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The estimation of the q; parameters is somewhat more difficult.
During the early stages of désign or development one can try and estimate
q; using historical data. One way to derive the q; parameter is to obtain
failure rate data on the program and equate it to z, using the assumptions
of case 3 or 4 of Table 1; and solve for q.. This process can be repeated
as the program is written and better value$ for q. determined. There is a
possibility that one could calculate qj from a J more basic procedure.
Knuth has shown that most FORTRAN statements are relatively
simple and fall into one of several classes. If each of these classes also
has a characteristic error rate, then by analysis of the q; values for sev-
eral examples, we should be able to derive characteristic’values for the q,
parameters. J

3.7. 6 Conclusions

The models developed above allows one to decompose a program into
a number of modules, paths, modes, or other functional entities. One can
then compute an expression for the software failure rate in terms of
probabilistic and deterministic parameters which can be estimated from
historical data or determined by analysis or experiment. The model pro-
vides a clear cut procedure for relating the reliability of a large software
system to the reliability of its constituent parts. The model is presently
being applied to a number of modest size problems in order to obtain
typical parameter values and validate the model.
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SECTION 1V
DIRECTIONS FOR NEXT PERIOD'S WORK

In the next period we plan to work on the following:

1. Adamowicz: Further work on measures for the evaluation of
software.
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2. Baggi:

3. Laemmel:

4, Marshall:

5. Ruston and
Berlinger:
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Completion of a report on the construction of an auto-
matic driver for Shooman's model of test covering
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Continuation of studies on statistical program test-
ing.
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BASE UNITS:
Quantity
length
mass
time

electric current

thermodynamic temperature

amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:
Acceleration

activity (of a radioactive source)

angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

_Unit_

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

_ Multiplication Factors

1 000 000 000 000 = 10'?

1 000 000 000 =

10°

1 000 000 = 10%
1000 = 10°
100 = 10?
10 = 10"
0.1=10""
0.01 =102
0.001 = 10"
0.000 001 = 10~ *
0.000 000 001 = 10~*
0.000 000 000 001 = 10~ 2
0.000 000 000 000 001 = 10-'*
0.000 000 000 H0O OOG 001 = 10~ '™

* To be avoided where possible

SI Symbol

m

kg

s

A

K

mol

cd

rad

st

S

H

v

\"

J

Hz

Ix

Im

Wb

T

A

w

Pa

C

J

Pa
Prefix
tera
giga
mega
kilo
hecto*
deka*
deci*
centi®
milli
micro
neno
pico
fomto
atto

__Formula

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-sV
AN
Vim
V-s/A
WA
VIA
WA
N-m
K
kg-m/s
(cycle)/s
lm/m
cd/m
cd-sr
A/m
Vs
Wb/m
)is
N/'m
Ass
N:m
Wisr
Jkg-K
N/m
Wim-K
m/s
Pa:s
mis
WIA
m
(wave)/m
N:m

SI Symbol

T
G

:-wg:ts,".ge.:'rz

Ehid
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MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢? areas of informatior sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility.
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